Generalized hierarchical kernel learning
نویسندگان
چکیده
This paper generalizes the framework of Hierarchical Kernel Learning (HKL) and illustrates its utility in the domain of rule learning. HKL involves Multiple Kernel Learning over a set of given base kernels assumed to be embedded on a directed acyclic graph. This paper proposes a two-fold generalization of HKL: the first is employing a generic `1/`ρ block-norm regularizer (ρ ∈ (1, 2]) that alleviates a key limitation of the HKL formulation. The second is a generalization to the case of multi-class, multi-label and more generally, multi-task applications. The main technical contribution of this work is the derivation of a highly specialized partial dual of the proposed generalized HKL formulation and an efficient mirror descent based active set algorithm for solving it. Importantly, the generic regularizer enables the proposed formulation to be employed in the Rule Ensemble Learning (REL) where the goal is to construct an ensemble of conjunctive propositional rules. Experiments on benchmark REL data sets illustrate the efficacy of the proposed generalizations.
منابع مشابه
Learning Gaussian Process Kernels via Hierarchical Bayes
We present a novel method for learning with Gaussian process regression in a hierarchical Bayesian framework. In a first step, kernel matrices on a fixed set of input points are learned from data using a simple and efficient EM algorithm. This step is nonparametric, in that it does not require a parametric form of covariance function. In a second step, kernel functions are fitted to approximate...
متن کاملGeneralization and Properties of the Neural Response
Hierarchical learning algorithms have enjoyed tremendous growth in recent years, with many new algorithms being proposed and applied to a wide range of applications. However, despite the apparent success of hierarchical algorithms in practice, the theory of hierarchical architectures remains at an early stage. In this paper we study the theoretical properties of hierarchical algorithms from a m...
متن کاملMultiple Kernel Learning with Hierarchical Feature Representations
In this paper, we suggest multiple kernel learning with hierarchical feature representations. Recently, deep learning represents excellent performance to extract hierarchical feature representations in unsupervised manner. However, since fine-tuning step of deep learning only considers global level of features for classification problems, it makes each layers hierarchical features intractable. ...
متن کاملHierarchical and Reweighting Cluster Kernels for Semi-Supervised Learning
Abstract: Recently semi-supervised methods gained increasing attention and many novel semi-supervised learning algorithms have been proposed. These methods exploit the information contained in the usually large unlabeled data set in order to improve classification or generalization performance. Using data-dependent kernels for kernel machines one can build semi-supervised classifiers by buildin...
متن کاملReproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation
In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 16 شماره
صفحات -
تاریخ انتشار 2015